Quantum Codes from Constacyclic Codes over the Ring Fq[u1,u2]/〈 u 1 2 -u1, u 2 2 -u2,u1u2-u2u1〉
نویسندگان
چکیده
منابع مشابه
Quantum Codes over the Ring F 2 + uF 2 + u 2 F 2 + . . . + u m F 2 Abdullah
Copyright c © 2015 Abdullah Dertli, Yasemin Cengellenmis and Senol Eren. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract A method to obtain self orthogonal codes over finite field F2 is given and the parameters of quantum...
متن کامل(1 + u)-Constacyclic codes over Z4 + uZ4
Constacyclic codes are an important class of linear codes in coding theory. Many optimal linear codes are directly derived from constacyclic codes. In this paper, (1 + u)-constacyclic codes over Z 4 + uZ 4 of any length are studied. A new Gray map between Z 4 + uZ 4 and Z 4 (4) is defined. By means of this map, it is shown that the Z 4 Gray image of a (1 + u)-constacyclic code of length n over ...
متن کاملA family of constacyclic codes over $\mathbb{F}_{2^{m}}+u\mathbb{F}_{2^{m}}$ and application to quantum codes
We introduce a Gray map from F2m + uF2m to F 2m 2 and study (1 + u)-constacyclic codes over F2m + uF2m ,where u 2 = 0. It is proved that the image of a (1+u)-constacyclic code length n overF2m+uF2m under the Gray map is a distance-invariant quasi-cyclic code of indexm and length 2mn over F2. We also prove that every code of length 2mnwhich is the Gray image of cyclic codes overF2m+uF2m of lengt...
متن کاملCyclic codes over the ring $ \Z_p[u, v]/\langle u^2, v^2, uv-vu\rangle$
Let p be a prime number. In this paper, we study cyclic codes over the ring Z p [u, v]/u 2 , v 2 , uv − vu. We find a unique set of generators for these codes. We also study the rank and the Hamming distance of these codes. We obtain all except one ternary optimal code of length 12 as the Gray image of the cyclic codes over the ring Z p [u, v]/u 2 , v 2 , uv − vu. We also characterize the p-ary...
متن کامل$(1-2u^2)$-constacyclic codes over $\mathbb{F}_p+u\mathbb{F}_p+u^2\mathbb{F}_p$
Let $\mathbb{F}_p$ be a finite field and $u$ be an indeterminate. This article studies $(1-2u^2)$-constacyclic codes over the ring $\mathbb{F}_p+u\mathbb{F}_p+u^2\mathbb{F}_p$, where $u^3=u$. We describe generator polynomials of this kind of codes and investigate the structural properties of these codes by a decomposition theorem.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics
سال: 2020
ISSN: 2227-7390
DOI: 10.3390/math8050781